Binding and retrograde transport of leukemia inhibitory factor by the sensory nervous system.
نویسندگان
چکیده
Leukemia inhibitory factor (LIF), a peptide growth factor with multiple activities, has recently been shown to support the generation and survival of sensory neurons in cultures of mouse neural crest and dorsal root ganglia (DRG). We have conducted binding experiments with 125I-LIF on cultures of DRG to determine the receptor distribution for LIF on these cells and found that at least 60% of the sensory neurons in the cultures bound 125I-LIF, all of which could be eliminated by the addition of unlabeled LIF. The other cells in the culture, which morphologically appeared to be Schwann cells, did not bind appreciable quantities of 125I-LIF. In order to investigate whether LIF is retrogradely transported to sensory neurons in vivo, 125I-LIF was injected into the footpads and gastrocnemius muscles of newborn and adult mice, following sciatic nerve ligation. Radioactivity accumulated in the distal portion of the sciatic nerve, indicating retrograde transport of LIF. Subsequent experiments on mice with unligated sciatic nerves showed that 125I-LIF is specifically transported into the sensory neurons of the DRG. There was no apparent transport of 125I-LIF into motor neurons in the spinal cord. These experiments demonstrate that LIF can specifically bind to and be transported by sensory neurons and further support the idea that LIF acts as a target-derived neurotrophic factor, analogous to NGF.
منابع مشابه
Administration of Leukemia Inhibitory Factor Increases Opalin Expression in the Cerebral Cortex of Male Balb/C Mice An In Vivo Study
Background: Leukemia inhibitory factor (LIF) is a neurortophic cytokine which plays an important role in the neural cell survival. Expression of LIF and its receptor, LIFR, in different brain regions has been demonstrated. Based on evidences LIF plays an important role in the modulation of neurogenesis and glial responses to injury. Up-regulation of LIF after central nervous system (CNS) damage...
متن کاملThe Comparison of Leukemia Inhibitory Factor (LIF) Concentration in the Serum and Cerebrospinal Fluid of Children with Bacterial Meningitis
Abstract Background and objectives: Meningitis is one of the most common infectious of the central nervous system (CNS), defined as an inflammation of the meninges. LIF is a potent pro-inflammatory factor. Cerebrospinal fluid (CSF) contains the growth factors and cytokines whose concentrations have been changed in most neurological diseases. The aim of this study was to determine the LIF conce...
متن کاملSemi-Quantitative Analysis of HOXA11, Leukemia Inhibitory Factor and Basic Transcriptional Element Binding Protein 1 mRNA Expression in the Mid-Secretory Endometrium of patients with endometriosis
Background: HOXA11 and leukemia inhibitory factor (LIF) and basic transcriptional element binding protein1 (BTEB1) are expressed in endometrium throughout the menstrual cycle and show a dramatic increase during the mid-luteal phase at the time of implantation. In this case-control study, the expression pattern of these mRNA was evaluated in patients with endometriosis at the time of implantatio...
متن کاملRetrograde axonal transport of neurotrophins: differences between neuronal populations and implications for motor neuron disease.
During development, neurons die if they do not receive neurotrophin support from the target cells they are innervating. Neurotrophins are delivered from the target to the cell bodies of the innervating neurons by interacting with specific receptors located on the nerve terminals and then together are retrogradely transported to the cell body. This process consists of a number of distinct events...
متن کاملThe effect of endurance training on dynein motor protein expression in Wistar male rats sciatic nerves with diabetic neuropathy
Introduction: Most neurodegenerative diseases are associated with the disruption of axonal transport and this might also be related to diabetes-associated disorders affecting the nervous system. Cytoplasmic dynein is a very important motor driving the movement of a wide range of cargoes toward the minus ends of microtubules. The effects of endurance training on dynein motor protein expression i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 9 شماره
صفحات -
تاریخ انتشار 1992